
Understanding quarkonium polarization
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• General considerations on the study of di-fermion decays of J = 1 states

– The role of the choice of the reference frame

– The interplay between production and decay kinematics

– A frame-invariant formalism for polarization measurements

• “Messages” for polarization analyses (and calculations)
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Motivation
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We believe that we can achieve some progress... going back to the fundamentals!

• No well-confirmed 
model yet
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• Measurements are challenging, the present status is puzzling



Basics
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J = 1 → three Jz eigenstates  1, +1 ,  1, 0 ,  1, -1  wrt a certain z

Measure polarization = measure (average) angular momentum composition

Method: study the (dilepton) decay angular distribution in the QQ rest frame

Relation between angular momentum state and decay distribution comes from:

* NO YES

ℓ +

ℓ 

z'

z
1

, +
1

 

 1, +1  +      1, 1    1, 0 1
2

1
2

1
√2

=

1)  “helicity conservation”

2)  rotational covariance
of angular momentum 
eigenstates

3)  parity conservation



The general distribution
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“Unpolarized” J/ψ does not exist
5

221 ...sin c sin2 cc o oso s2s
dN

d
      

   

Single elementary subprocess:
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There is no combination of a0, a+1 and a-1 such that λθ = λφ = λθφ = 0

→ Polarization is a “necessary” property of J = 1 states
Measuring and understanding it is crucial

... also from an “experimental” point of view:
quarkonium acceptances depend strongly on the 
dilepton decay kinematics. Quarkonium is by default 
unpolarized in MC generators...

Only a fortunate mixture of subprocesses
(or randomization effects) can lead to a cancellation 

of all three measured anisotropy parameters

The angular distribution is never intrinsically isotropic
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What polarization axis? 6

helicity conservation (at the production vertex)
→ J =1 states produced in fermion-antifermion annihilations (q-q or e+e–)

at Born level have transverse polarization along the

relative direction of the colliding fermions (Collins-Soper axis)
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Drell-Yan is a paradigmatic case
but not the only one

NRQCD → at very large pT , 
quarkonium produced from 
the fragmentation of an
on-shell gluon, inheriting
its natural spin alignment
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The observed polarization depends on the frame
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For |pL| << pT , the CS and HX frames differ by a rotation of  90º
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The azimuthal anisotropy is not a detail  
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These two decay distributions are indistinguishable when the azimuthal dependence 
is integrated out. But they correspond to opposite natural polarizations, which can 
only be originated by completely different production mechanisms.

In general, measurements not reporting the azimuthal anisotropy provide an 
incomplete physical result. Their fundamental interpretation is impossible
(relies on arbitrary assumptions).
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Case 1: natural transverse polarization Case 2: natural longitudinal polarization, 
observation frame  to the natural one



How would the CDF J/ψ result look like in the CS frame?
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for all possible hypotheses on λφ
HX

Without information on the azimuthal anisotropy,
we cannot translate λθ from one frame to another

HX

λφ = 0
HX



One hypothesis 10

J/ψ’s naturally polarized in the CS frame
• most significant λθ

• purely polar anisotropy, λφ ~ 0

Assuming that this continues to 
be valid up to collider energies

P. Faccioli, C. Lourenço, J. Seixas and 

H.K. Wöhri, PRL 102, 151802 (2009) 
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E866 (CS)

CDF (HX) 

All translated to the CS frame
as function of p
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Message nº1
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Today, we are allowed to make the speculation in the previous slide because 
CDF has not reported the azimuthal anisotropy.

We have assumed that
λφ = 0 in the CS frame.
This automatically implies that 
a significant value of λφ should 
be measured in the HX frame:

By measuring also λφ CDF will remove this ambiguity of interpretation.

Measure the full angular decay distribution, not only 
the polar anisotropy.



What if E866 had chosen the helicity frame?
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E866’s (2S+3S) result is compatible with
the Drell-Yan “template” 1 + cos2θCS

CS frame

HX frame

In the helicity frame λθ would be seen as strongly kinematics-dependent:

1/3



Reference frames are not all equally good
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How the anisotropy parameters transform from one frame to another depends explicitly
on the production kinematics. In fact, the angle δ between helicity and Collins-Soper 
axes is given by

We consider  decay. For simplicity of illustration we assume that each experiment has 
a flat acceptance in its nominal rapidity range:

CDF |y| < 0.6

D0 |y| < 1.8

ATLAS & CMS |y| < 2.5

ALICE e+e |y| < 0.9

ALICE μ+μ 2.5 < |y| < 4

LHCb 2 <|y| < 5

cosδ =
m pL

mT p

Gedankenscenario:
how would different experiments observe a Drell-Yan-like decay distribution

*“naturally” of the kind   1 + cos2θ in the Collins-Soper frame]
with an arbitrary choice of the reference frame?



The lucky frame choice
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(CS in this case)

ALICE μ+μ / LHCb
ATLAS / CMS
D0
ALICE e+e

CDF



Less lucky choice
15

(HX in this case)

λθ = +0.65

λθ = 0.10

+1/3

1/3

ALICE μ+μ / LHCb
ATLAS / CMS
D0
ALICE e+e

CDF



Message nº2
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When observed in an arbitrarily chosen frame, the simplest possible pattern of a 
constant natural polarization may be seen as a complex decay distribution rapidly 
changing with pT and rapidity. This is not wrong, but gives a misleading view of the 
phenomenon, even inducing an artificial dependence of the measurement on the 
specific kinematic window of the experiment.

Measure in more than one frame.



Message nº3
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Warning: transformed (= not natural) polarization depends not only on the acceptance 
interval, but also on the acceptance shape!

The problem can be solved by measuring in small kinematic cells.

Also theoretical calculations should take into account how the momentum distribution is 
distorted by the acceptance of the specific experiment, or provide event-level predictions.

Avoid (as much as possible) kinematic averages.



Frame-independent polarization
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Measuring frame-invariant quantities is useful for

• a self-consistency check of the analysis (is      really the same in two frames?)

• a clearer representation of the results, removing frame-induced kinematic dependencies



The shape of the distribution is obviously frame-invariant.
→ there exists a family of frame-independent quantities, e.g.

λθ = +1
λφ = 0

λθ = –1/3
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z

(and any 
function 
of it)



Basic meaning of the frame-invariant quantities
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Let us suppose that, in the collected events, n different elementary subprocesses yield 
angular momentum states of the kind

(wrt a given quantization axis), each one with probability .

The rotational properties of J=1 angular momentum states
imply that

The quantity

is therefore frame-independent. It can be shown to be equal to

In other words, there always exists a calculable frame-invariant relation of the form
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The Lam-Tung limit
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Another consequence of rotational properties of angular momentum eigenstates: 

→ dilepton produced in each single elementary subprocess has a distribution of the type

wrt its specific  “              ” axis.

Case : each subprocess is characterized by a fully transverse polarization

wrt a certain “natural” axis (which may be different from subprocess to subprocess).

( ) ( ) ( ) ( )
0 1 10 1 1i i i ia a a      

( )
0 0ia  

( ) ( ( )( ))1 2 1, , 0i i ii
         F

( ) 1
2

i F

( ) ( ) 1

2

1 2

3
i if  



 



 



F F

→ 4 1    Lam-Tung identity
(Drell-Yan including pQCD corrections)
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1. The existence (and frame-independence) of the LT relation is the kinematic
consequence of the rotational properties of   J = 1 angular momentum eigenstates

2. Its form derives from the dynamical input that all contributing processes produce 
the dilepton via one transversely polarized photon

Simple interpretation of the LT relation

 Corrections to the Lam-Tung relation (parton-kT, higher-twist effects) should 
continue to yield invariant relations.
In the literature, deviations are often searched in the form

But this is not a frame-independent relation. Rather, corrections should be searched 
in the invariant form

 For any superposition of processes, concerning any J = 1 particle (even in parity-
violating cases: W, Z ), we can always calculate a frame-invariant relation analogous 
to the LT relation.

More generally:
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Advantages
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Invariant quantities provide an easier representation of polarization results.

Let us consider, for illustrative purposes, the following (purely hypothetic) mixture 
of subprocesses for  production:

1)  f (1) = 60% of the events have a natural transverse polarization in the CS frame

2)  f (2) = 40% of the events have a natural transverse polarization in the HX frame



Frame choice 1 
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All experiments choose the CS frame

ALICE μ+μ / LHCb
ATLAS / CMS
D0
ALICE e+e

CDF



Frame choice 2
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All experiments choose the HX frame

ALICE μ+μ / LHCb
ATLAS / CMS
D0
ALICE e+e

CDF



Any frame choice
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The experiments measure an invariant quantity, for example
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is an “average of the natural polarizations”, 
irrespective of the directions of the respective axes:
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= i-th “natural” polarization
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Message nº4
26

Frame-invariant quantities are immune to “extrinsic” kinematic dependencies 
induced by the observation perspective.
They minimize the acceptance-dependence of the measurement.

Use invariant relations to facilitate comparisons.



Experimental biases are not frame-invariant
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cosθHX

φCS

cosθCS

φHX

helicity Collins-Soper

This spurious “polarization” must be accurately corrected.

→ unaccounted detector effects due to acceptance limitations will
violate the physical frame-invariant relations between decay angular parameters.

→ checking whether the same value of an invariant quantity is obtained
(within systematic errors) in two distinct polarization frames is a non-trivial test.

Minimum 
detector 
sensitivity to 
muon momenta 
+ trigger cuts

Reconstructed
unpolarized (1S)

CMS-like MC with
pT(μ) > 3 GeV/c 
(both muons)

pT() > 10 GeV/c,
|y()| < 1,

The “detector polarization frame” is naturally defined in the LAB

The induced anisotropies have not the properties of a J = 1 decay distribution



Example
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Example of preliminary J/ψ result, before evaluation of systematic errors

→ check quantitatively by calculating
the average invariant “polarization”
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0.49 [± 0.13]

[CS and HX data fully 
statistically correlated]

order of magnitude of the expected 
systematic error on the anisotropy 
parameters

λ(HX)  λ(CS) =~ ~

HX  / CSλθ

λφ

Is this a self-consistent pattern?



Message nº5
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Use invariant relations
for a better control over systematic effects.



Summary
• Even if experimentally challenging, polarization measurements are textbook exercises 

of basic quantum mechanics. By keeping in mind fundamental notions  we will 
perform better polarization measurements

• The observable angular distribution reflects the rotational-covariance properties of 
angular momentum

– it depends (strongly) on the reference frame according to definite rules

– its parameters satisfy a frame-independent identity, a special case of which is the  
Lam-Tung relation

• In the quarkonium analyses of CMS, we will

– determine the full angular decay distribution, not only the polar anisotropy

– provide results in two polarization frames

– avoid averages over large kinematic intervals, using (pT ,y) cells

– exploit the existence of frame-independent relations

• to detect residual systematic effects 

• to facilitate the comparison with theoretical calculations and other results
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